Spectral Indices to Improve Crop Residue Cover Estimation under Varying Moisture Conditions

نویسندگان

  • Miguel Quemada
  • Craig S. T. Daughtry
چکیده

Crop residues on the soil surface protect the soil against erosion, increase water infiltration and reduce agrochemicals in runoff water. Crop residues and soils are spectrally different in the absorption features associated with cellulose and lignin. Our objectives were to: (1) assess the impact of water on the spectral indices for estimating crop residue cover (fR); (2) evaluate spectral water indices for estimating the relative water content (RWC) of crop residues and soils; and (3) propose methods that mitigate the uncertainty caused by variable moisture conditions on estimates of fR. Reflectance spectra of diverse crops and soils were acquired in the laboratory over the 400–2400-nm wavelength region. Using the laboratory data, a linear mixture model simulated the reflectance of scenes with various fR and levels of RWC. Additional reflectance spectra were acquired over agricultural fields with a wide range of crop residue covers and scene moisture conditions. Spectral indices for estimating crop residue cover that were evaluated in this study included the Normalized Difference Tillage Index (NDTI), the Shortwave Infrared Normalized Difference Residue Index (SINDRI) and the Cellulose Absorption Index (CAI). Multivariate linear models that used pairs of spectral indices—one for RWC and one for fR—significantly improved estimates of fR using CAI and SINDRI. For NDTI to reliably assess fR, scene RWC should be relatively dry (RWC < 0.25). These techniques provide the tools needed to monitor the spatial and temporal changes in crop residue cover and help determine where additional conservation practices may be required.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remote sensing of crop residue cover and soil tillage intensity

Management of plant litter or crop residues in agricultural fields is an important consideration for reducing soil erosion and increasing soil organic C. Current methods of quantifying crop residue cover are inadequate for characterizing the spatial variability of residue cover within fields or across large regions. Our objectives were to evaluate several spectral indices for measuring crop res...

متن کامل

Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover

Remotely sensed estimates of crop residue cover (fR) are required to assess the extent of conservation tillage over large areas; the impact of decay processes on estimates of residue cover is unknown. Changes in wheat straw composition and spectral reflectance were measured during the decay process and their impact on estimates of fR were assessed. Proportions of cellulose and hemicellulose dec...

متن کامل

Impact of Band-ratio Enhanced Awifs Image to Crop Classification Accuracy

Multispectral satellite images have been utilized in the National Agricultural Statistics Service (NASS) for crop cover classification and crop acreage estimation since the 1970's. Though ancillary data is utilized to enhance the classification accuracy, there are few applications that maximize the utilization of the feature information of the given multispectral images. Every multispectral ima...

متن کامل

Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1) Hyperspectral Data

Soil management practices that maintain crop residue cover and reduce tillage improve soil structure, increase organic matter content in the soil, positively influence water infiltration, evaporation and soil temperature, and play an important role in fixing CO2 in the soil. Consequently, good residue management practices on agricultural land have many positive impacts on soil quality, crop pro...

متن کامل

Development of an Index-based Regression Model for Soil Moisture Estimation Using MODIS Imageries by Considering Soil Texture Effects

Soil moisture content (SMC) is one of the most significant variables in drought assessment and climate change. Near-real time and accurate monitoring of this quantity by means of remote sensing (RS) is a useful strategy at regional scales. So far, various methods for the SMC estimation using a RS data have been developed. The use of spectral information based on a small range of electromagnetic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016